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When an exciton absorption overlaps a continuum background absorption, the exciton line is
broadened and interferes with the background. The interference effect is investigated for an

exciton superposed on the continuum absorption of its spin-orbit partner channel.

For that

case it is shown that the electron-hole exchange interaction is the important factor for the in-

terference.

A line-shape formula is derived which properly takes account of the interference

caused by the exchange interaction, and the result is compared with experiment for NaBr with

reasonable agreement.

I. INTRODUCTION

When a discrete level is embedded in a continuum
in excitation spectra, the discrete state can decay
into ionized states of the background continuum,
and as a consequence, the line shape gets a char-
acteristic asymmetric peak.

This interference effect (Fano effect) was first
considered by Fano! for the atomic excitation spec-
tra; it was shown that the interference causes a
rather drastic change of the line shape from a sim-
ple superposition of the discrete and continuous
spectra,

As for the optical spectra of solids, a similar
situation occurs for excitons overlapping with a
continuous band-to-band transition spectrum.
Phillips and co-workers stressed the importance
of the Fano effect in the fundamental spectra of
rare-gas solids.*® Toyozawa et al.* discussed the
interference effect from a somewhat different ap-
proach on the basis of their general formalism for
the fundamental optical spectra. Several model
calculations®=7 have also been done for exciton
resonance embedded in a continuum, In these
theoretical calculations, only a single conduction
band and a single valence band are considered ex-
plicitly; in other words, they consider a single-
channel problem, when we understand the term
“channel” to mean collectively electron-hole pairs

generated by the same conduction and valence bands.

Since the continuum and the exciton superposed on
it belong to the same channel, the interference
occurs through the intrachannel interaction. Cou-
lomb interaction between electron and hole is re-
sponsible for such an intrachannel interaction.

In the actual optical-absorption spectra of in-
sulating crystals, however, we observe usually
more than one channel. A typical example is the
two channels corresponding to the two valence bands
split by the spin-orbit interaction, as encountered,
for example, in alkali halides. Interference of
such spin-orbit-split two channels is the subject

IS

of the present paper.

The most conspicuous effect of such an interchan-
nel interaction can already be seen in the exciton
doublet absorption of alkali halides. The intensity
ratio of the doublet deviates considerably from
2:1, a normally expected value in the absence of
the interchannel mixing. The topic was previously
discussed by Toyozawa and the present author,®
and the exchange interaction between electron and
hole is known to be responsible for such an inter-
channel mixing. Recent experiments for CuBr-
CuCl solid solutions presented a good demonstra-
tion of the theory.?

In this paper, we generalize the theory so as to
include the continuum absorption as well, and see
the effect of the electron-hole exchange interaction
on the whole line shape. We are particularly in-
terested in the case where the binding energy of the
exciton is a little smaller than the spin-orbit split-
ting of the valence band, so that the exciton of the
second channel is superposed on the continuum of
the first channel. The exchange interaction then
gives rise to an interference of the exciton line
with the continuum. Such a situation is certainly
realized in alkali bromides, and we can compare
our results with experiment,

In Sec. II, we consider the interchannel inter-
action between the spin-orbit-split two channels,
having in mind simple insulating crystals with an
s-like conduction band and a p-like valence band
split by the spin-orbit interaction. In the usual
theory of the Wannier exciton, both the Coulomb
and the exchange interactions between electron and
hole can cause interchannel mixing, but in the pres-
ent specific case, it is shown that only the exchange
interaction gives rise to mixing of the two channels,
A line-shape formula is then obtained using a
Green’s-function technique to describe the inter-
ference effects caused by the exchange interaction.
The result is used in Sec. III to analyze the funda-
mental optical spectra of NaBr, In Sec. IV, con-
clusions are summarized.
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We shall entirely rely upon the Wannier exciton
theory'®=*2 and use the Elliott hydrogenic model,?

II. INTERFERENCE OF SPIN-ORBIT-SPLIT
TWO CHANNELS

We consider a simple band structure commonly
found in many ionic crystals and rare-gas solids:
The conduction band has a minimum at k = 0 of the
standard shape and of s symmetry. It is twofold
degenerate. The two states will be specified by an
index n. The p-like valence band, possessing its
top at =0, is split by the spin-orbit interaction
into a fourfold degenerate p;,, band and a twofold
bp1s2 band. We distinguish these six valence-band
states by an index m. We assume that the p;,,
and p,,, valence bands can be characterized by a
common spherical mass, neglecting fluting of the
constant energy surface, This assumption is per-
missible since the reduced mass of exciton is pri-
marily determined by the spherical electron mass,
which is much lighter than the hole mass in alkali
halides. We shall hereafter refer to the electron-
hole pairs with a p3,, hole and a p,,, hole as be-
longing to the A and B channels, respectively.

We aim at taking into account mixing of the two
channels, but for the moment we neglect it and re-
gard the two channels as independent. The effec-
tive-mass equation for the exciton is then written

D H(B, BF, (B)=E,F,(B) (1)
B'
HO(E, ) :ﬁzeci.(ﬁ. Y w () + 553.,)(!;)

k

.\ { +3\ for the p,,, hole (B channel)
— 31 for the py,, hole (A channel)

We have ngz):hzkz/Zu, U being the reduced
mass, and v(B) is an appropriate attractive Cou-
lomb interaction. The index v refers to the quan-
tum number of exciton states. The total wave
vector K is taken to be infinitesimal, since we
consider direct excitons. As we forget for the
moment the interchannel effects, the Hamiltonian
H, is diagonal with respect to the band indices m
and #, and the envelope function F, is common to
all the band pairs (m,n).

The conventional method of Wannier for solving
Eq. (1) is to transform it into a differential equa-
tion. When the potential v(B) is taken to be hydro-
genic, then the problem reduces to that of a hydro-
gen atom. By using that solution, the optical-ab-
sorption spectrum

I(iw) =23, |F,(0)|%6(w— E,) (2)

can be calculated.'®!* Only s-like envelope func-

Y. ONODERA

I

tions can contribute to it. The index v refers to
discrete as well as continuum states. Figure 1shows
schematically the optical spectra according to the
Elliott theory.!® The intensity of the A channel is
twice as large as that of the B, because of the dif-
ference of the degeneracy of the valence p;,, and
P12 levels.

Two cases can occur according to the relative
magnitudes of the spin-orbit splitting A and the
exciton binding energy E5;. When X <E, as in
Fig. 1(a), the doublet exciton absorption is well
separated from the continuum absorption, whereas
if A2 Eg as in Fig. 1(b) the B exciton is embedded
in the continuum of the A channel. In any case,
the spectra are simple so long as we ignore the
interchannel interaction; the intensity of the A ex-
citon is twice as strong as that of the B exciton,
and besides, the B exciton overlapping with the
continuum remains a sharp 6 function. This situ-
ation changes however when we take account of the
interchannel interaction. In fact, in our previous
paper, we have considered the case (a) and inves-
tigated the variation of the intensity ratio of the A
and B excitons due to the electron-hole exchange
interaction.® The purpose of the present section is
to generalize the theory so as to include the con-
tinuum states as well and thereby to consider
broadening of the B exciton due to the interchannel
interaction.

The plan of the remainder of this section is as
follows: We first consider the origin of the inter-
channel interaction. The residual electron-hole
interaction not included in the Hamiltonian H, is
the exchange interaction

(mnB [V, lm'"'ﬁ') = O33080%
X 25 X Rub, m'R|g|mb, " R) (3)
and off-diagonal parts of the Coulomb interaction

(mng| Ve|m'n'B'y = - 633.(nB,m'0| g|n'B,md) , (4)

@ gA (a) N K Eg

FIG. 1. Optical-absorp-
tion spectra due to the in-
dependent A and B chan-
nels for (a) A<<Eg and
(b) AX Ep cases.

®) A (b) A 2 Eg
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whose diagonal (m =m',n=n") terms are already
included in H,. Expressions (3) and (4) are ob-
tained in the standard theory of Wannier exciton
under the assumption that the Wannier functions
are sufficiently well localized so that thelr over-
lap can be neglected. The basis ket |mnp) stands
for a state in which the valence electron m is
excited to a conduction band » and the electron-
hole relative separation is 5 The two-electron
integrals with respect to the Wannier functions

(na,m 'R Iglma,n'§)= fd.fxfd?a

xa:ﬁ(ﬁ)‘l:'ﬁ(‘fz)(ez/l - -f'zl )85(F1)a, 5 (F2)

are understood to include spin inner products. We
first evaluate the matrix elements of these inter-
actions for our problem. It will be seen that the
Coulomb interaction does not couple the two chan-
nels split by the spin-orbit interaction. Therefore,
we are left only with the exchange interaction as
the origin of the interchannel mixing. Having
established this, we proceed to compute the line
shape of the optical-absorption spectra. The re-
sult will be compared with experiment for NaBr
in Sec. III.

Let us first prove that the interchannel matrix
elements of the Coulomb interaction vanish., Con-
sider the states

23 F,(B)|mnB) and TgF,.(B)|m'n’B')

belonging to different channels. Since we are con-
sidering optically allowed states, we understand
both F, and F,. to be s-like. Matrix element of
the direct Coulomb interaction between these two
states becomes

- [ [ 23 F,B)F, Bay(F1~ B)an - B)]
x& ([Fy - To| Japs (Fo)an (Fo)E1dTE,,  (5)

using the expression (4) for the Coulomb interac-
tion, We first take the spin inner product for ¥,.
Since the conduction-band indices # and »’ should
be either sa or sB in the present problem, » and
n’ must be the same in order that the integral may
not vanish. Next, in view of the s symmetry of
the conduction-band Wannier function and of the
envelope functions, the quantity in the bracket is
totally symmetric with respect to ¥;. Therefore,
in order that the integral may remain nonvanish-
ing, a, and a,. must be of the same symmetry.
That is, however, impossible since they belong

to valence bands of different symmetry (ps,, and
bi1/2), which means that the integral (5) itself
should vanish. In this way, we have shown that
the Coulomb interaction does not couple the two
spin-orbit-split channels, under the assumption
that the Wannier functions are sufficiently well lo-

calized that their overlap can be neglected.

Having thus known that interchannel matrix ele-
ments of the Coulomb interaction vanish, we now
see that the interchannel interaction arises from
the electron-hole exchange interaction alone. In
considering the exchange interaction, it is conve-
nient to use symmetrized electron-hole pair states
as the basis states. From the p;,, hole and the
Sy electron (A channel), one gets exciton states
with total angular momentum J=1 and 2, Similarly
the p,/, hole and the s,,, electron produce J=0
and J=1 states (B channel). Among these states
we are interested solely in the J=1 states since
only they are opticglly allowed. We shall denote
these states by |AB) and | BB), respectively, in
the exciton representation. Their explicit expres-
sions are given in Ref. 8, and we do not repeat it
here. The spin singlet components in these wave
functions are % and 3, respectively, and the dipole
moments associated with them are proportional to
vZ and ~/—13-, respectively.® The matrix elements
of the exchange interaction in this representation
can be computed using (3) and the explicit form of
the exciton wave functions, to get the result

(AB IV, 1AB ") =4J65503:5 ,
BBV, 1BE'y=3T85853i , )
(AB IV, | BB') =(BB I V,IAP') =22"/%7 63565.5,
where
J = [[a,(F))a,(Fg(| T - F5 D)a,(Fola (T,)dF, dF,
- #n(n¥/Q), (7)

W= fa,,(?) ex a,(F)dr,

for transverse-wave excitation. The integrals in
the above expression include no more spin inner
products. a, and a, are the spatial parts of the
Wannier functions for the valence and conduction
bands, respectively, and Q@ is the volume of the
unit cell. The matrix elements (6) indicate that
the exchange interaction gives rise to interchannel
as well as intrachannel interaction. The Kronecker
8’s in (8) reflect the short-ranged nature of the ex-
change interaction, which works only when the
electron and hole come on the same lattice site.
Now that the matrix elements of the exchange
interaction are known, we proceed to calculate the
optical-absorption spectra in the presence of the
exchange interaction. If we ignore the exchange
interaction, the line shape becomes the one given
by Elliott®3; but introduction of the exchange inter-
action causes a rather drastic change in the optical
spectra unexpected in the simple Elliott theory.
The line shape of the optical-absorption spectrum
is given, apart from some unessential factors, by
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I(rw)=23;[g| M |7)|? 6(rw~ E,), (8)

where |g) is the ground state of the crystal, [j)is
an excited eigenstate of the total Hamiltonian
H=H,+V,, with energy eigenvalue E;, and M is
the dipole moment operator. As is known from the
Elliott theory,'®!* M is nonvanishing only (i) for
states with K=0, (ii) for singlet spin states, and
(iii) when the electron and hole are on the same
lattice site.

Equation (8) can be rewritten

I(fw) =1 Im{g| M(z-H)"*M | g)
=1 (GGEA +5GBB + 212G HR + 5212 GRY)
(9)
using the Green’s function
G48(2) = (ABl (z - 1| BE)
Z =jw —i0*,
Let us define the Green’s function in the absence of
the exchange interaction by

R (z) = (AB| (z— Hy)™ | AB') .

Since H, does not couple the A and B channels,
R#43(z) vanishes. The line shape in the absence of
the exchange interaction is therefore given by

Ip(fw) = 1 m[3R%Az) + $REE(2)] . (10)

This line-shape spectrum is just what is shown
schematically in Fig. 1. It is simply a superposi-
tion of the spectra of independent two channels,
each of which can be calculated according to the
Elliott theory.'®

In the presence of the exchange interaction, we
take matrix elements of the operator identity

11 1 1
z-H z-H, 2-Hy *z2-H °

Since the electron-hole exchange interaction V,

has nonvanishing matrix elements only for B=8"=0,
the resulting equations can be written simply in
matrix form as

Go 5" Goo Rf?oA 0\ 2 (Ri* O
88 ) +39 BB

2 V2\(G§: G
*\v2 1)((;0 GB2 )

which can be easily solved for Gg?, Gg‘(f, G52, and
G32. Substitution of them into Eq. (9) yields

3RAA(Z) + 3RJB:QB(Z)
Y| R&f‘(Z)+ sRo(2)]

This gives the line-shape formula including the
interchannel as well as intrachannel effects of the
exchange interaction.

I(iiw): (11)

[

Our line-shape formula (11) is seen to include
the following special cases.

(a) When we neglect the exchange interaction, it
reduces to the simple expression (10), a superposi-
tion of the absorption due to the noninteracting two
channels. There is no interference between the
two. In particular, the B exciton remains unbroad-
ened even when it overlaps with the continuum ab-
sorption of the A channel.

(b) When X < Ej, the doublet exciton absorption
is well separated from the continuum, as shown in
Fig. 1(a). In the exciton region, we can approx-
imate

2
it P00 ana a2

where the energy 2z is measured from the energy

level of the n»=1 exciton of the A channel, and Fy,
is the envelope function for that state. Since we

assumed the same effective mass for the A and B
excitons, the envelope function is common to the

two channels. Then our expression (11) has sim-
ple poles at energies which satisfy

*E-x ’

where the exchange energy A is defined by
A=2J | F (0)]%. - (2

These poles

E=1Az (A2 22-12A)1/2]

give the energies of the exciton states in the pres-
ence of the exchange interaction. Intensities of
the absorptions are given by the residues. One
can thus investigate the relative intensity of the
A and B excitons as a function of the exchange
energy A and the spin-orbit splitting A. The re-
sult can be shown to be the same as was previously
obtained by means of a more direct calculation.®
The above two cases are the special cases in-
cluded in our line-shape formula (11). To see the
effects of the exchange interaction in more detail,
in particular, its effect on the interference, we
assume for simplicity that the absorption spectra
of the A channel consist of a gingle discrete ex-
citon line and a flat continuum starting from the
n=2 exciton level. We therefore take

lImR (z)—lFu(Olzb(ﬁw)+ 39(7'iw 3ER)

(13)

where ag is the exciton Bohr radius, and the con-
stant before the step function 6 is the height of the
Elliott step at the beginning of the continuum ab-
sorption,’® The origin of the photon energy 7w is
placed at the n=1 exciton level of the A channel.
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The analytic function which realizes (13) is
IF;s(o)Iz+ Q ln%EB'z

z 21Egay E, '’

R{(e) = (14)
with an appropriate cutoff constant E,, which is on
the order of the width of the conduction band. For
the B-channel Green’s function, we consider only
the exciton absorption

RBB(z)= | F1,(0)|%/(z =), (15)

since we are most interested in the interference
of this exciton line with the continuum absorption.

Substituting Eqs. (14) and (15) into Eq. (11),
and using | F;,(0) | 2= Q/ma%, we get the line-shape
formula

| F(0)[2 1
e T (16)
Al 1 2 1. 3%E -2
rom1-5(ha e wigess).

The A exciton is shifted to an energy E, a root of
f(E)=0, after the exchange interaction has been
switched on, It appears as a 6 function with the in-
tegrated intensity

Fy,(0)[2 (.ézﬂzz) T (17)

A 92 J,.&

Our line-shape formula (16) includes also the in-
terference of the B exciton with the A continuum
when the former is superposed on the latter, which
can be seen, for example, in that the spectral in-
tensity drops to zero at the photon energy Zw=2,
the original energy position of the B exciton.
Such a situation is characteristic of a case where
there exists only a single continuum; if the back-
ground continuum absorption on which a discrete
level is superposed consists of more than one
channel, then the intensity does not drop to zero.}

Another feature of the line shape (16) arises
from the positive sign of the exchange energy A,
Although not transparent in our expression for
the exchange energy (12) and (7), Takeuti'! has
shown that it is absolutely positive, in terms of
another representation for it. Now the positive
sign of A guarantees the shift of the B exciton to
higher energy by the exchange interaction. We
can, therefore, in general expect positive asym-
metry, i.e., a dip (down to zero) on the low-en-
ergy side and a peak on the high-energy side, as
a result of the interference caused by the exchange
interaction.

Besides, the broadening of the B exciton can
be computed from Eq. (16) in the limit of weak in-
terchannel coupling. The half-height full width
becomes

W= 2nA2/9E (18)

30
QN .
W te
3 .
$ .
20 r"
10} ’ ’ ’
eV .-. ry ) 1
. * ¥ =—r=0
T .'-, A SN @‘]
| ] " o™ AN | |
] ) ! L A L’ L L I {
%.6 eV 70
PHOTON ENERGY

FIG. 2. Optical-conductivity spectra of NaBr. The
dots are the experimental values obtained by Miyata
through Kramers-Kronig analysis of his reflectivity data
at 85°K (Ref. 17). The dot-dashed line represents the
step absorption assumed in the absence of the electron-
hole exchange interaction. The solid and dashed lines
are the theoretical curves with the exchange interaction
taken into account. The former includes incoherent
broadening of the B exciton (I'=0. 09 eV). The scale of
the theoretical curves is normalized so that the integrated
intensity of the first exciton at 6.68 eV agrees with the
experimental value (Ref. 17) 5.23 eV%, The dot-dashed
arrows indicate the energy positions of the excitons in
the absence of the exchange interaction.

in that limit,

These are the qualitative features expected from
our line-shape formula (16). In Sec. III, it is used
to analyze the fundamental optical spectra of NaBr.

III. COMPARISON WITH EXPERIMENT
AND DISCUSSION

In Sec. II we considered interference of spin-
orbit-split two channels for a simple, but realis-
tic, band structure frequently encountered in many
insulating crystals. The interchannel coupling has
been shown to arise from the electron-hole ex-
change interaction. A line-shape formula has
been obtained which takes into account such an in-
terference effect.

We are especially concerned with the interference
of the exciton line with continuum absorption when
the former is overlapping with the latter. Such a
situation can occur if A 2 Ep, as seen in Fig. 1(b).
NaBr is the best example in which the above situa-
tion is realized, as confirmed by two-photon ab-
sorption experiments.!®!® We therefore try in
this section to analyze the optical spectra of NaBr
observed very recently by Miyata,'” on the basis of
the theory developed in Sec. II.

The dots in Fig. 2 show the spectra of optical
conductivity—a quantity proportional to oscillator
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strength density—of NaBr at 85 °’K. The first peak
located at 6. 68 eV is the A exciton broadened by
exciton-phonon interaction. It has quite a narrow
width, 0,02 eV.!” Above the tail absorption on the
high-energy side, which is mostly due to the optic-
phonon sideband, the spectral intensity starts to
rise at ~'7.0 eV, where we consider the continuum
absorption of the A channel to set in. The value
7.0 eV is consistent with the onset of the two-pho-
ton absorption,’® which should begin with the n =2
exciton. Upon this continuum is superposed the B
exciton at 7.2 eV broadened by interchannel inter-
action with the continuum absorption. We are going
to analyze this line shape using the formula (16)
obtained in Sec. II.

In doing that, the ordinate of the theoretical curves
will be normalized in such a way that the integrated
intensity of the A exciton given by (17) may agree
with the experimental value, That is to say, we
consider not only the line shape of the B exciton
resonance but also its intensity relative to the A
exciton,

The line-shape expression (16) includes four
parameters: Eg, A, Eg, and A. Among them, the
cutoff constant E., introduced to prevent the real
part of the Green’s function from diverging, is
taken to be 1.0 eV. The calculated spectrum is
insensitive to the choice of this parameter. The
spin-orbit splitting A and the binding energy of the
n=1 exciton E; are almost determined; we take
A=0.54 eV and Eg=0. 515 eV. The broken line in
Fig. 2 represents the line shape (16) for the ex-
change energy A=0.12 eV. The broken arrows in-
dicate the energy positions of the A and B exciton
levels in the absence of the exchange interaction,
One can see that the excitons are shifted to higher
energy by the exchange interaction on account of the
positive sign of A, The most interesting feature of
the calculated spectrum is the antiresonance at
7.15 eV, the original energy position of the B ex-
citon. Such a drop of the spectral intensity to zero
is specific to the case where the background con-
tinuum consists of a single channel® as in the pres-
ent problem. The width of the B exciton resonance
can be calculated from (18) to be W=0.02 eV,

This value is however far too small compared
with the observed width, Furthermore, the observed
spectrum has no characteristic antiresonance.
These discrepancies are due to the fact that the
spectra are broadened by electron-phonon inter-
action, whose effects we have not yet taken into
account. The B exciton can decay into free electron-
hole pairs of the A channel through the electron-
phonon interaction as well as through the exchange
interaction. In the absence of a theory on the in-
terference effects caused by the electron-phonon
interaction, we make an ad hoc assumption that the
B exciton is incoherently broadened by electron-
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phonon interaction with the background, and we re-
place (z =1)™ in Eq. (16) by (z =X -4I'/2)"}, intro-
ducing an incoherent broadening I' of the B exciton.
The resulting line shape is shown in solid line for
I'=0.09 eV. The overall agreement with experiment
is very good, though a little discrepancy remains
in the starting region. The positive asymmetry of
the line shape is still maintained in the solid curve,
in agreement with the observed asymmetry. This
is due to the positive sign of the exchange energy,
as mentioned above.

The agreement is good indeed, but one may well
feel that many parameters have been used in the
fit. In actual fact, however, we have not much
liberty in the choice of the values of the parameters.
The broadening I', the spin-orbit splitting A, and
the binding energy E5 are almost determined;
there is left little room for adjusting their values.
The only disposable parameter is the exchange en-
ergy A, to which the overall line shape is quite
sensitive. By adjusting this parameter, we have
made the fit so as to reproduce the line shape as
well as the intensity relative to the A exciton. For
this reason, the fit is a rather severetest. Itis there-
fore believed that the agreement supports our the-
ory of the interference effects caused by the ex-
change interaction.

As for the magnitude of the spin-orbit splitting
A, our value 0, 54 eV is appreciably larger than
the free-atom splitting 0.47 eV. The splitting is
known to be enhanced in the solid state because of
the overlap of the halogen p orbitals,*® and our
value is in good agreement with the value 0.53 eV
computed by Kunz.'®

Before closing this section we make a remark on
the antiresonance. The calculated line shape for
I'=0 has a pronounced antiresonance on the low en-
ergy side of the peak. But it is smeared out in the
85 °K spectra on account of the broadening due to
the electron-phonon interaction. -Since the phonon
effects diminish at low temperatures, it is hoped
to extend the experiments down to liquid-helium
temperatures to observe possible antiresonance.
In fact, such a dip has been observed for RbI by
Fischer and Hilsch.!® More recently Tomiki and
co-workers observed a similar dip in KI, which
becomes progressively pronounced with lowering
of the temperature.?® Although the exciton struc-
ture of these iodides are somewhat complex be-
cause of the presence of higher conduction bands,
the underlying physics is believed to be similar.

IV. SUMMARY

We have investigated interference of an exciton
with a continuum absorption for the case where the
two belong to spin-orbit-split channels. The inter-
channel interaction has been shown to arise from
the exchange interaction between electron and hole.
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A line-shape formula has then been derived to take
account of the effects caused by the exchange inter-
action. An analysis of the observed optical spectra
of NaBr based on that formula supports our theory
of the interference. The most striking feature in
the spectra is a possible antiresonance on the low
energy side, which is in general expected from the
positive sign of the exchange energy. It has also
been found that the interchannel interaction through
the electron-phonon interaction is important, so
the author hopes to do a theoretical study on the
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interference of a discrete exciton state with a con-
tinuum absorption caused by electron-phonon inter-
action,
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The isotope effect of the non-Devonshire lines can be well understood if one takes the origin
of these as transitions corresponding to the quantized translational motion of the impurity in the

matrix cage and considers the various perturbing mechanisms.

The present model in which ro-

tation-translation coupling and coupling through the anisotropic part of crystalline field are con~
sidered as the chief perturbing mechanisms proves to be good in explaining the isotope effect

of the near-infrared lines in the KCl and KBr matrices. It provides a good explanation of the
multiplet line structure observed in the KC1-OH" system and absence of such a structure in

the KC1-OD™ system. The more complex case of the NaCl matrix is also explained in a satis-
factory way. There has not been an attempt to explain the RbCl-OH" system because of the

lack of sufficient experimental data.

I. INTRODUCTION

Recent experiments on the near-!~® and far-in-
frared spectroscopy? and the thermal-conductivity
measurements® on the hydroxyl-ion-doped alkali
halide systems have established the presence of a
30-35 cm™ energy level for this impurity. This
level could not be explained by the Devonshire mod-
el, and hence was named the non-Devonshire level.

Different workers tried to explain the origin of this
level, but without significant success. In the KCl1
matrix, the OH™ to OD" frequency ratio for the non-
Devonshire line has been found to be very close

to the square root of the moments of inertia of the
two ions. This is the expected isotope effect for
the energy levels associated with the torsional-
harmonic-oscillation model of the impurity.! How-
ever, the simple torsional-harmonic-oscillator



